Some Constructions of Non-Commutative Latin Squares of Order n

نویسندگان

  • H. V. Chen
  • A. Y. M. Chin
  • S. Sharmini
چکیده

Let n be an integer. We show the existence of at least three non-isomorphic non-commutative Latin squares of order n which are embeddable in groups when n ≥ 5 is odd. By using a similar construction for the case when n ≥ 4 is even, we show that certain non-commutative Latin squares of order n are not embeddable in groups. Keywords—group, Latin square, embedding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE SPECTRUM OF r-ORTHOGONAL LATIN SQUARES OF DIFFERENT ORDERS

Two Latin squares of order n are orthogonal if in their superposition, each of the n ordered pairs of symbols occurs exactly once. Colbourn, Zhang and Zhu, in a series of papers, determined the integers r for which there exist a pair of Latin squares of order n having exactly r different ordered pairs in their superposition. Dukes and Howell defined the same problem for Latin squares of differe...

متن کامل

New bounds for pairwise orthogonal diagonal Latin squares

A diagonal Latin square is a Latin square whose main diagonal and back diagonal are both transversals. Let dr be the least integer such that for all n > dr there exist r pairwise orthogonal diagonal Latin squares of order n. In a previous paper Wallis and Zhu gave several bounds on the dr. In this paper we shall present some constructions of pairwise orthogonal diagonal Latin squares and conseq...

متن کامل

Nearly Orthogonal Latin Squares

A Latin square of order n is an n by n array in which every row and column is a permutation of a set N of n elements. Let L = [li,j ] and M = [mi,j ] be two Latin squares of even order n, based on the same N -set. Define the superposition of L onto M to be the n by n array A = (li,j ,mi,j). When n is even, L and M are said to be nearly orthogonal if the superposition of L onto M has every order...

متن کامل

On the commuting graph of some non-commutative rings with unity

‎‎Let $R$ be a non-commutative ring with unity‎. ‎The commuting graph‎ of $R$ denoted by $Gamma(R)$‎, ‎is a graph with a vertex set‎ ‎$Rsetminus Z(R)$ and two vertices $a$ and $b$ are adjacent if and only if‎ $ab=ba$‎. ‎In this paper‎, ‎we investigate non-commutative rings with unity of order $p^n$ where $p$ is prime and $n in lbrace 4,5 rbrace$‎. It is shown that‎, ‎$Gamma(R)$ is the disjoint ...

متن کامل

On Non-Polynomial Latin Squares

A Latin square L = L(`ij) over the set S = {0, 1, . . . , n − 1} is called totally non-polynomial over Zn iff 1. there are no polynomials Ui(y) ∈ Zn[y] such that Ui(j) = `ij for all i, j ∈ Zn; 2. there are no polynomials Vj(x) ∈ Zn[x] such that Vj(i) = `ij for all i, j ∈ Zn. In the presented paper we describe four possible constructions of such Latin squares which might be of particular interes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012